ic Polytopes and Convexity of

lor Cyclic

1l
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Goal: predict outcome of particle collisions
~ scattering amplitude.

N
7
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Goal: predict outcome of particle collisions
~ scattering amplitude.
Classically:

A=) Ig
g

Arkani-Hamed and Trnka, The Amplituhedron (2013): amplitudes
in tree-level N' = 4 super Yang-Mills have poles along the
boundaries of certain semialgebraic sets!
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Semialgebraic sets in projective space

» A basic semialgebraic cone in R"*1 is a set defined by
homogeneous equations and inequalities

» A semialgebraic set S C P™ is the projection of a
semialgebraic cone in R”*! under

m: RN\ {0} — P
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Semialgebraic sets in projective space

» A basic semialgebraic cone in R"*1 is a set defined by
homogeneous equations and inequalities

» A semialgebraic set S C P™ is the projection of a
semialgebraic cone in R”*! under

m: RN\ {0} — P

» A convex set is the projection of a convex cone
Egzz—y? >0 T

Theorem (Kummer=Sinn 22)

The convex hull of a connected set S C P"* may be computed in
any affine chart fully containing S.

2 /24



The projective simplex is

A, = Pconvieg, ..., en} C P".

The Grassmannian parameterizes k-spaces in R™, and is a
projective variety via

Gr(k,n) — P(AFR™)
span(vl, N Uk) e A RVANVAN )

The positive Grassmannian is

Grzo(k,n) = A(n)_l M Gr(k,n)

k
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Let Z be a (k + m) x n matrix with positive maximal minors.

A*Z o Gr(k,n) --» Gr(k,k+m)
span(vi, ..., vk) +>span(Zvy, ..., Zug).

The amplituhedron Ay, n(Z) is the image of Gr>o(k,n).
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Let Z be a (k + m) x n matrix with positive maximal minors.

A*Z o Gr(k,n) --» Gr(k,k+m)
span(vi, ..., vk) +>span(Zvy, ..., Zug).

The amplituhedron Ay, n(Z) is the image of Gr>o(k,n).

Example (k = 1)
Z An—l — P
e; — Z;

4

The image is a cyclic polytope.
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Some cyclic polytopes in P3:

[Hodges 2009]
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Gr>o(k,n): linear (simplex) N nonlinear (Grassmannian).
What about Ay, 077
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The twistor coordinates wrt Z on Gr(k, k + 2) are

(ij) = det[Z; Z; Y], Y] € Gr(k, k + 2).
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The twistor coordinates wrt Z on Gr(k, k + 2) are
(ij) = det[Z; Z; Y], Y] € Gr(k, k + 2).
On Gr(2,4), we have

(12) = (z1522j—22i21)P3a— (21123 — 231215 ) P2a~+(22i 23— 23: 225 ) p1a+- - -
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The twistor coordinates wrt Z on Gr(k, k + 2) are
(ij) = det[Z; Z; Y], Y] € Gr(k, k + 2).
On Gr(2,4), we have
(12) = (214225 —22i21)P3a— (21:23§ — 231215 ) P2a+ (221 23— 23i 225 ) D14+ - -

This vanishes on lines [Y] meeting the line Z1Z5 in P3.

7 /24



Theorem (Ranestad—Sinn—Telen 24)

The algebraic boundary of the m = 2 amplituhedron is given by
(12), ..., (n—1n),(In) = 0.

Theorem (Even-Zohar-Lakrec—Tessler 25)

The algebraic boundary of the m = 4 amplituhedron is given by
(ti+1774+1)=0,for1 <i<j<n.

8 /24



The exterior cyclic polytope of Z is

Cimn(Z) :=Pconv(Z;, N...NZ; : {i1,... ik} C[n])
in P(AFRFT™).
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The exterior cyclic polytope of Z is

Ck:,m,n(Z) = IP)COI’]V(ZrL'1 VANPAN sz : {il, ..

Example (The polytope Cy 1 4(7))

Z>
°

L
Z 7 Zs

In P2

. ,’ik} C [n])
in P(AFRFT™),
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The exterior cyclic polytope of Z is

Cimn(Z) :=Pconv(Z;, N...NZ; : {i1,... ik} C[n])
in P(AFRFT™).

Example (The polytope Cy; 4(7))
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The exterior cyclic polytope of Z is

Ck,m,n(Z) = IPCOI’]V(Zz'l VAP Zz’k : {il, e ,ik;} C [n])

in P(AFRFT™).

Example (The polytope Cs14(2))

Z1 N Zy
oy N Z3
Z1 N 23
Z3 N Zy
Z1 N2y
Loy N Ly
In (P%)*

Theorem (Mazzucchelli—-P)
The polytope Cy i n(Z) is the convex hull of Agmn(Z).
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The polytope Cs 1 4(Z) looks like

YARAYZY)
oy N 3
Z1 NZs
Z3 N Zy
1 N\ Zy
Loy N Zy

[Karp—Williams 17| The amplituhedron Ay 1 4(Z) looks like

Not convex!
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The polytope Co 1 4(Z) looks like

YARAYZY)
oy N 3
Z1 NZs
Z3 N Zy
1 N\ Zy
Loy N Zy

[Karp—Williams 17| The amplituhedron Ay 1 4(Z) looks like

Not convex!

Theorem (Mazzucchelli—P)
The amplituhedron Az 2., (Z) equals Co2,(Z) N Gr(2,4).
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Fix real numbers 0 < a < b<c<d<e< f and consider
1 1 1 1
a c e f
62 f2
o3

f3

Then C226(Z) is the convex hull in P of the 15 columns of A2Z :

1
d

N
|
SO

\V)
N

b

a? 2 d
ad b A3 &P

a—>b a—c a—d a—e d—f e—f
a2 — p2 a2 — o2 a2 — g2 a2 — 2 a2 — f2 e2 _ f2
a3 _ b3 a3 _ 3 a3 _ d3 03 _ o3 a3 — f3 3 _ 3
a’b — ab? a’c — ac? a’d — ad? a’e — ae? d2f — df2 le — ef2
a3b — ab’ alc — ac? ald — ad? ale — ae3 d3f — df3 63f — ef3

a’b? — a?p3 alc? — a?c3 a3d? — a?d3 ale? — a2e3

d3F2 _ 283 GBf2 _ G243
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Fix real numbers 0 < a < b<c<d<e< f and consider
1 1 1 1
a c d e

S =

1
f
b f?

a? i d? 2
CL3 b3 63 d3 63 f3

N
|

Then C226(Z) is the convex hull in P of the 15 columns of A2Z :

a—>b a—c a—d a—e d—f e—f
a2 — p2 a2 — o2 a2 — g2 a2 — 2 a2 — f2 e2 _ f2
a3 _ b3 a3 _ 3 a3 _ d3 03 _ o3 a3 — f3 3 _ 3
a’b — ab? a’c — ac? a’d — ad? a’e — ae? d2f—df2 le—ef2
a3b — ab’ alc — ac? ald — ad? ale — ae3 d?’f—df3 63f—6f3

a3b2 — 023 a3c? — a2¢3  aBd2 — a2d3  aBe? — a2ed ... dBf2_ 423 B2 _ 243

Substituting (1,3,4,7,8,9), it has f-vector (15,75,143,111, 30).
Among the 30 facets, there are 15 4-simplices, six double pyramids

over pentagons, three cyclic polytopes C'(4,6), and three with
f-vector (9,26, 30,13).
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|dentify vectors Z; A Z; with edges 5 of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

J J J
d// > ke ° 6
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|dentify vectors Z; A Z; with edges 5 of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 }: 1 1
El O ) E}
d// > &6 ° 6

For (1,3,4,7,8, f), three facets for f < 45/7 are

(12,23,34, 45,56}, {12,23,34,56,16}, {12,16,34,45,56} .
and for f > 45/7 change to
(12,16,23,34,45}, {12,16,23,45,56} {16,23,34,45,56} .

Combinatorics changes as Z varies over positive matrices!
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|dentify vectors Z; A Z; with edges 5 of a complete graph. There
are 30 facets, with four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
B O 1 )
d// 5 6 5 6

For (1,3,4,7,8, f), three facets for f < 45/7 are

(12,23,34, 45,56}, {12,23,34,56,16}, {12,16,34,45,56} .
and for f > 45/7 change to
(12,16,23,34,45}, {12,16,23,45,56} {16,23,34,45,56} .

Combinatorics changes as Z varies over positive matrices! This is
because the oriented matroid of A¥Z changes.

12 / 24



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A\ Z;_, for Z generic*.

k Y
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The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A\ Z;_, for Z generic*.

k Y

Example
Z1 N2y
Ly N L3
Z1 N Zs
Z3 N2y
Z1 N2y
Zoy N Zy

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.

13 / 24



The wedge power matroid

The wedge power matroid Wy, ., ,, is the matroid of the point
configuration Z;, A ... A\ Z;_, for Z generic*.

k Y

Example
Z1 N Zy
Zy N Z3
Z1 N 23
Z3 N Zy
Z1 N2y
Zoy N2y

Non-bases are {12,13,14},{12,23,24},{13,23,34}, {14, 24, 34}.

Remark
The matroid W, 1 111 is the matroid of the braid arrangement.
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The wedge power matroid Wy, ,

The case m = 1:

» Matroid of discriminantal arrangement of n general points
in P* [Manin—Schechtman 89]

The case k = 2:

» Dual of Kalai's hyperconnectivity matroid H,,—,—2(n)
[Kalai 85, Brakensiek—Dhar—Gao—Gopi—Larson 24]

» Hg(n) is the algebraic matroid of n x n skew-symmetric
matrices of rank at most d [Ruiz-Santos 23]

Thecase k=2 and n =m + 4:
» Graphical characterization of bases of Ha(n) | Bernstein 17]
» Hs(n) is the algebraic matroid of Gr(2,n)

Upshot: describing bases of Wy, 1, ,, and faces of Cj ,, n(Z) is hard!

14 / 24



Of the (165) minors of A2Z, 1660 are zero (nonbases) and 3345 are
nonzero (bases).

Symmetry classes of minors:

1 1 1

[N
)
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Of the (165) minors of A2Z, 1660 are zero (nonbases) and 3345 are
nonzero (bases).

Symmetry classes of minors:

] 1 1

2 1 3 1 5 1

2 2 Q O
o \
0 0 [ 4 0 5 0 3 0
El El El JO El
O\O 3 5 2 :4 2 4
4 4

2 1 2 2 1 3 1 2 1
O O
4 0 3 0 4 0 4 0 0 4
> > > 5 >
3 5 4 5 2 5 4 5

Sign of each minor is fixed by a < ... < f except for

12,23, 34,45, 56, 16] =
(a—c)(a—d)(a—e)(b—d)(b—e)(b—f)(d—f)(c — €)(c — f)

- (abd — abe — acd 4 acf + ade — adf + bce — bef — bde + bef + cdf — cef).

15 / 24



Theorem (Mazzucchelli—P)

The combinatorial type of Ca2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial

det[Z1 N Zy ... Z5s N Zg Zg N Z1| or one of its permutations is
zero.

In Pliicker coordinates on Z € Gr(4,n):

D1234P1356P2456 — P1235P1346P2456 + P1235P1246P3456 -
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Theorem (Mazzucchelli—P)

The combinatorial type of Ca2,(Z) is constant for positive 4 x n
matrices Z outside the closed locus where the polynomial
... Zs N Zg Zg N\ Z1] or one of its permutations is

det [Zl N Lo
ZEro.

In Pliicker coordinates on Z € Gr(4,n):

D1234P1356P2456 — P1235P1346P2456 + P1235P1246P3456 -

For K = m = 2, small f-vectors include:

n=>9:
n==~06 :
n=="1:
n=3~§8 :
n=9 :

10
15
21
28
36

35
75
147
266
450

55
143
328
664

1217

40
111
282
616

1191

12
30
82
192
390

—_ = = =
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What is a dual amplituhedron?

Andrew Hodges, Eliminating spurious poles from gauge-theoretic
amplitudes (2009):

A(1727374%57) = el = 12)°(25)° / (W.Zy)*DW .

[12][23][34][43][51]  (12)(23)(34) (45 (51}

Here Ps is the dual of

17 / 24



The polar dual of a semialgebraic set S C R" is
S*={yeR" :z-y>—-1VreS}.
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The polar dual of a semialgebraic set S C R" is

S*={yeR":z-y>-1VxeS}.

o
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The polar dual of a semialgebraic set S C R™ is

S* i ={yeR":z-y>—-1VxeS}.

S*
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The polar dual of a semialgebraic set S C R™ is
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S*

Observation: S* = conv(S)*. Very big!
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The polar dual of a semialgebraic set S C R™ is

S* i ={yeR":z-y>—-1VxeS}.

S*

Observation: S* = conv(S)*. Very big!
The extendable dual amplituhedron is

Ak = Gr(m,k+m)NCy ., -

20 / 24



Define
Wi =Zi-mii N Zi—maa N NZi N+ N1, i € [n].
The twist map is

7 : Matso(k +m,n) — Matso(k +m,n),

Z— W,
where W has columns Wy, ..., W,. [Marsh-Scott 13|
Example
[Zl Z6] — [26/\21/\22 ZANZLyNDdg ... Z5/\Z6/\Zl].
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Define

Wi =Zi-mii N Zi—maa N NZi N+ N1, i € [n].

The twist map is

7 : Matso(k +m,n) — Matso(k +m,n),

Z— W,
where W has columns Wy, ..., W,. [Marsh-Scott 13|
Example
[Zl Z6] — [Z6/\Z1/\Z2 ZANZLyNDdg ... Z5/\Z6'/\Zl].

Theorem (Mazzucchelli—-P)
There is an equality

Az2,(Z)* is an amplituhedron for another particle configuration!
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For C22,6(Z) there are four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
b O ) )
d// 5 6 5 6

The first three come from Schubert divisors, which consist of
> lines meeting (12) in P?
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For C22,6(Z) there are four types of supporting hyperplanes:

3 2 3 2 3 2 3 2

4 1 4 1 4 1 1
b O ) )
d// 5 6 5 6

The first three come from Schubert divisors, which consist of

> lines meeting (12) in P < defining equation (12) = 0
» lines meeting (123) N (156) in P3
> lines meeting (123) N (456) in P?

Theorem (Mazzucchelli-P)

The supporting Schubert hyperplanes of Ca2,(Z) are exactly the
(g‘) hyperplanes consisting of lines meeting
(t—1lii+1)N(j—155+1) for1 <i < j <n. Furthermore, they
intersect transversally in Gr(2,4) for every Z € Mat~o(4,n).
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The Schubert exterior cyclic polytope ék,m,n(Z ) is obtained from
Cr.mn(Z) by deleting all facet inequalities whose supporting
hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli-P)

There is an equality
Coon(Z) = Coon(W)".
Example
The f-vector of Cy 26 is
(15,75,143,111, 30).
The f-vector of 52,2,6 is

(30,111, 143, 75, 15).
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